Skip to main content

Compare ATL vs. MFC

In a way, ATL is to COM what MFC is to the Windows API. The goal of ATL is to provide a thin but effective wrapper around the most common COM interfaces without sacrificing component performance. Despite this similarity, however, the designs of MFC and ATL differ in several key ways:


MFC contains an interconnected hierarchy of classes, whereas ATL is a set of disjoint templates. This difference means that with ATL you don't pay the size/speed penalty for a given feature unless your component actually uses it.


MFC is linked to a project as a static library or a DLL, but ATL is compiled as source code. Because there are no OBJ files to link to, ATL requires no run-time DLL redistribution.1


MFC supports a single-inheritance model, whereas the functionality of an ATL component depends entirely on the use of multiple inheritance. Specifically, a component that supports several different COM interfaces will inherit from several different associated ATL templates.


Over time, MFC has grown considerably. As the expectations placed on Windows applications have increased, so have the size and feature set of MFC. Although a similar progression is likely as the use of ATL becomes more prevalent, ATL's use of templates rather than regular inheritance will almost assuredly prevent class proliferation.

Comments

Popular posts from this blog

Explain Polymorphism and Flavors of Polymorphism...

Polymorphism is the ability of different objects to react in an individual manner to the same message. This notion was imported from natural languages. For example, the verb "to close" means different things when applied to different objects. Closing a door, closing a bank account, or closing a program's window are all different actions; their exact meaning is determined by the object on which the action is performed. Most object-oriented languages implement polymorphism only in the form of virtual functions. But C++ has two more mechanisms of static (meaning: compile-time) polymorphism: Operator overloading. Applying the += operator to integers or string objects, for example, is interpreted by each of these objects in an individual manner. Obviously, the underlying implementation of += differs in every type. Yet, intuitively, we can predict what results are. Templates. A vector of integers, for example, reacts differently from a vector of string objects when it receives ...

• Why might you need exception handling be used in the constructor when memory allocation is involved?

Your first reaction should be: "Never use memory allocation in the constructor." Create a separate initialization function to do the job. You cannot return from the constructor and this is the reason you may have to use exception handling mechanism to process the memory allocation errors. You should clean up whatever objects and memory allocations you have made prior to throwing the exception, but throwing an exception from constructor may be tricky, because memory has already been allocated and there is no simple way to clean up the memory within the constructor.

• What are the advantage and disadvantage of using exception handling?

Disadvantage is a slight overhead imposed by implementing of exception handling mechanism. Advantage is "bullet-proof" program. With exception handling you have a mechanism which guarantee you control over program behavior despite the errors that might be in your program. With try-catch block you control not even given block of the program, but also all underlying function calls.