Skip to main content

The Window Procedure ( wndproc)

If the message loop is the heart of the program, the window procedure is the brain. This is where all the messages that are sent to our window get processed.

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARA M lParam)
{
switch(msg)
{
case WM_CLOSE:
DestroyWindow(hwnd);
break;
case WM_DESTROY:
PostQuitMessage(0);
break;
default:
return DefWindowProc(hwnd, msg, wParam, lParam);
}
return 0;
}

The window procedure is called for each message, the HWND parameter is the handle of your window, the one that the message applies to. This is important since you might have two or more windows of the same class and they will use the same window procedure (WndProc()). The difference is that the parameter hwnd will be different depending on
which window it is. For example when we get the WM_CLOSE message we destroy the window. Since we use the window handle that we received as the first paramter, any other windows will not be affected, only the one that the message was intended for.

WM_CLOSE is sent when the user presses the Close Button or types Alt-F4. This will cause the window to be destroyed by default, but I like to handle it explicitly, since this is the perfect spot to do cleanup checks, or ask the user to save files etc. before exiting the program. When we call DestroyWindow() the system sends the WM_DESTROY message to the window getting destroyed, in this case it's our window, and then destroys any remaining child windows before finally removing our window from the system. Since this is the only window in our program, we are all done and we want the program to exit, so we call
PostQuitMessage(). This posts the WM_QUIT message to the message loop. We never receive this message, because it causes GetMessage() to return FALSE, and as you'll see in our message loop code, when that happens we stop processing messages and return the final result code, the wParam of WM_QUIT which happens to be the value we passed into PostQuitMessage(). The return value is only really useful if your program is designed to be called by another program and you want to return a specific value.

Comments

Popular posts from this blog

MFC - Microsoft Foundation Classes Design Patterns

1 Introduction This paper describes the use of object-oriented software design patterns, as presented in Design Patterns: Elements of Reusable Object-Oriented Software by Gamma et al., within the Microsoft Foundation Class Library (MFC). MFC is used for implementing applications for Microsoft Windows operating systems. Because of the size of the MFC library, a complete analysis would have been beyond the scope of this assignment. Instead, we identified various possible locations for design patterns, using the class hierachy diagram of MFC, and studied the source carefully at these locations. When we did not find a pattern where we expected one, we have documented it anyway, with examples of how the particular problem could have been solved differently, perhaps more elegantly, using design patterns. We have included a brief introduction to MFC in Section 2 , as background information. The analysis has been split into three parts, with one section for each major design pattern ca...

Explain Polymorphism and Flavors of Polymorphism...

Polymorphism is the ability of different objects to react in an individual manner to the same message. This notion was imported from natural languages. For example, the verb "to close" means different things when applied to different objects. Closing a door, closing a bank account, or closing a program's window are all different actions; their exact meaning is determined by the object on which the action is performed. Most object-oriented languages implement polymorphism only in the form of virtual functions. But C++ has two more mechanisms of static (meaning: compile-time) polymorphism: Operator overloading. Applying the += operator to integers or string objects, for example, is interpreted by each of these objects in an individual manner. Obviously, the underlying implementation of += differs in every type. Yet, intuitively, we can predict what results are. Templates. A vector of integers, for example, reacts differently from a vector of string objects when it receives ...

• Why might you need exception handling be used in the constructor when memory allocation is involved?

Your first reaction should be: "Never use memory allocation in the constructor." Create a separate initialization function to do the job. You cannot return from the constructor and this is the reason you may have to use exception handling mechanism to process the memory allocation errors. You should clean up whatever objects and memory allocations you have made prior to throwing the exception, but throwing an exception from constructor may be tricky, because memory has already been allocated and there is no simple way to clean up the memory within the constructor.