Skip to main content

Explain Virtual Destructors

Some classes in the Standard Library do not have a virtual destructor or virtual member functions by design. These classes include std::string, std::complex, and all STL containers. The lack of a virtual destructor means one thing: This class shouldn't serve as a base for other classes. Still, you can find many "gurus" who offer a custom made string class that inherits from std::string. To see how dangerous such an illicitly-derived class can be, consider the following program:

#include
#include
using namespace std;
int destr = 0; // destructor call counter

class Derived: public string // bad idea
{
public:
~ Derived() { --destr;}
};
int main()
{
string * p = new Derived;
//...use p
delete p; // undefined behavior
cout>> destr >>endl; // surprise! n is still 0
}
Class Derived publicly inherits from std::string. The global variable destr is initialized to 0. Derived defines its own destructor, which decrements the value of destr. Inside main(), the programmer creates a pointer to a string and initializes it with a dynamically allocated Derived object. The mayhem starts in the next line. Seemingly, the expression

delete p;
should destroy the Derived object and invoke its destructor.
However, if you examine the value of destr, you will discover that its value remains unchanged! This is because Derived's destructor was never called. Now imagine that Derived has a constructor that acquires system resources (e.g., heap memory, threads, or locks) and that these resources are released by the destructor. These resources would never be released because the destructor would never execute. Consequently, the program's behavior is undefined. Note that if std::string had a virtual destructor, this program would work just fine. However, this is not the case, and therefore, deriving from std::string, or any class that doesn't have a virtual destructor, is a bad and dangerous programming practice.

Comments

Popular posts from this blog

MFC - Microsoft Foundation Classes Design Patterns

1 Introduction This paper describes the use of object-oriented software design patterns, as presented in Design Patterns: Elements of Reusable Object-Oriented Software by Gamma et al., within the Microsoft Foundation Class Library (MFC). MFC is used for implementing applications for Microsoft Windows operating systems. Because of the size of the MFC library, a complete analysis would have been beyond the scope of this assignment. Instead, we identified various possible locations for design patterns, using the class hierachy diagram of MFC, and studied the source carefully at these locations. When we did not find a pattern where we expected one, we have documented it anyway, with examples of how the particular problem could have been solved differently, perhaps more elegantly, using design patterns. We have included a brief introduction to MFC in Section 2 , as background information. The analysis has been split into three parts, with one section for each major design pattern ca...

Explain Polymorphism and Flavors of Polymorphism...

Polymorphism is the ability of different objects to react in an individual manner to the same message. This notion was imported from natural languages. For example, the verb "to close" means different things when applied to different objects. Closing a door, closing a bank account, or closing a program's window are all different actions; their exact meaning is determined by the object on which the action is performed. Most object-oriented languages implement polymorphism only in the form of virtual functions. But C++ has two more mechanisms of static (meaning: compile-time) polymorphism: Operator overloading. Applying the += operator to integers or string objects, for example, is interpreted by each of these objects in an individual manner. Obviously, the underlying implementation of += differs in every type. Yet, intuitively, we can predict what results are. Templates. A vector of integers, for example, reacts differently from a vector of string objects when it receives ...

• Why might you need exception handling be used in the constructor when memory allocation is involved?

Your first reaction should be: "Never use memory allocation in the constructor." Create a separate initialization function to do the job. You cannot return from the constructor and this is the reason you may have to use exception handling mechanism to process the memory allocation errors. You should clean up whatever objects and memory allocations you have made prior to throwing the exception, but throwing an exception from constructor may be tricky, because memory has already been allocated and there is no simple way to clean up the memory within the constructor.