Skip to main content

When is virtual inheritance needed?

Multiple inheritance is a powerful and useful feature in C++, but it can lead to a problem known as the DDD or "Deadly Diamond of Derivation", as in this case:
class ElectricAppliance{ int voltage, int Hertz ; public: //...constructor and other useful methods int getVoltage () const { return voltage; } int getHertz() const {return Hertz; } };
class Radio : public ElectricAppliance {...}; class Tape : public ElectricAppliance {...};
class RadioTape: public Radio, public Tape { //multiple inheritance //... }; void main() {
RadioTape rt;
int voltage = rt.getVoltage(); //compilation Error -- ambiguous //call; //two copies getVoltage() exist in rt: //one from Radio and one from Tape. //Also: which voltage value should be //returned? }//end main()
The problem is clear: rt is derived simultaneously from two base classes, each having its own copy of the methods and data members of ElecctricAppliance. As a result, rt has two copies of ElectricAppliance. This is the DDD. However, giving up multiple inheritance will lead to a design compromise. So in cases where reduplication of data and methods from a common base class is undesirable, virtual inheritance should be used:
class Radio : virtual public ElectricAppliance {...}; class Tape : virtual public ElectricAppliance {...}; class RadioTape: public Radio, public Tape { //multiple inheritance };
As a result, class RadioTape contains a single instance of ElectricAppliance shared by Radio and Tape, so there are no ambiguities, no memory waste, and no need to give up the powerful tool of multiple inheritance:
void main() { RadioTape rt; int voltage = rt.getVoltage(); //now OK }//end main()

Comments

Popular posts from this blog

MFC - Microsoft Foundation Classes Design Patterns

1 Introduction This paper describes the use of object-oriented software design patterns, as presented in Design Patterns: Elements of Reusable Object-Oriented Software by Gamma et al., within the Microsoft Foundation Class Library (MFC). MFC is used for implementing applications for Microsoft Windows operating systems. Because of the size of the MFC library, a complete analysis would have been beyond the scope of this assignment. Instead, we identified various possible locations for design patterns, using the class hierachy diagram of MFC, and studied the source carefully at these locations. When we did not find a pattern where we expected one, we have documented it anyway, with examples of how the particular problem could have been solved differently, perhaps more elegantly, using design patterns. We have included a brief introduction to MFC in Section 2 , as background information. The analysis has been split into three parts, with one section for each major design pattern ca...

Explain Polymorphism and Flavors of Polymorphism...

Polymorphism is the ability of different objects to react in an individual manner to the same message. This notion was imported from natural languages. For example, the verb "to close" means different things when applied to different objects. Closing a door, closing a bank account, or closing a program's window are all different actions; their exact meaning is determined by the object on which the action is performed. Most object-oriented languages implement polymorphism only in the form of virtual functions. But C++ has two more mechanisms of static (meaning: compile-time) polymorphism: Operator overloading. Applying the += operator to integers or string objects, for example, is interpreted by each of these objects in an individual manner. Obviously, the underlying implementation of += differs in every type. Yet, intuitively, we can predict what results are. Templates. A vector of integers, for example, reacts differently from a vector of string objects when it receives ...

• Why might you need exception handling be used in the constructor when memory allocation is involved?

Your first reaction should be: "Never use memory allocation in the constructor." Create a separate initialization function to do the job. You cannot return from the constructor and this is the reason you may have to use exception handling mechanism to process the memory allocation errors. You should clean up whatever objects and memory allocations you have made prior to throwing the exception, but throwing an exception from constructor may be tricky, because memory has already been allocated and there is no simple way to clean up the memory within the constructor.